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A difficult topic in gas dynamics is represented by the interaction of an underexpanded 
supersonic jet with a planar obstacle perpendicular to the flow, primarily because there may 
be sharp transitions from stationary flow to nonstationary with certain combinations of the 
working parameters, and strong oscillations arise in the system [I-7]. With given values for 
the Mach number M a and jet parameter n, one gets the following sequence of states during smooth 
quasistationary recession of the nozzle from the obstacle: i) a stationary state of radial 
flow, 2) the first nonstationary state (oscillatory), 3) a flow having a central circulation 
zone, 4) the second nonstationary state, and 5) flow with an unperturbed first side lobe. 
The first nonstationary state has been &xamined in some detail for an unbounded planar ob- 
stacle [1-3], as have the oscillations with an obstacle of restricted dimensions [4-7]. An 
experiment has been performed [I] for the second nonstationary state for an unbounded ob- 
stacle, but the lack of reliable diagnostic facilities rendered the results qualitative 
rather than systematic. In [i], there were also substantial inaccuracies in determining the 
frequency characteristics for the flow mode. 

Vacuum effects have been examined for the nonstationary interaction with an unbounded 
perpendicular obstacle [8], where a third nonstationary state was identified for distances 
from the end of the nozzle to the obstacle exceeding H6, the distance corresponding to the 
transition to a flow with unperturbed first side lobe. No one has examined the phase char- 
acteristics of the pressure fluctuations at the obstacle surface and in the surrounding 
space for an unbounded obstacle (for dense jets with Reynolds numbers of 104-106). This led 
us to perform fresh experiments, where the main attention was given to the phase character- 
istics in nonstationary flow, which has provided an adequate physical model for the interac- 
tion. 

i. The experiments were performed with a supersonic wind tunnel having a cylinder air 
supply (stagnation temperature T o = 290 K), which had an open working part. The jet was pro- 
duced by a conical Laval nozzle, which gave M a = 2.14, semivertex angle ~ = 5 ~ . The exit 
section of the nozzle had diameter d~ = 17.5 mm. The planar obstacle [i] was a massive steel 
plate 400 x 350 mm. At the center, there was a moving rack bearing four pressure sensors 
with a pitch of 35 mm. The positions of the sensors were as follows: DD-10 inductive pres- 
sure sensor for measuring the static pressure at the obstacle (placed opposite the receiving 
hole in the rack), and first, second, and third LKh-611 piezoelectric sensors with working 
membrane surfaces of diameter 6 ~m (mounted flush on the rack) for measuring the pressure 
fluctuations at the obstacle. The initial position of the jet stagnation point was halfway 
between the third and second sensors. The passband of the LKh-611 was i0 Hz to 20 kHz. The 
deviation from flatness in the frequency response was examined by comparing the spectra of 
the sensors with that of a 4135 condenser microphone made by Bruel and K6r. The discrepan- 
cies in the readings did not exceed 2 dB in that frequency range. The sensors were connected 
to 00011 microphone amplifiers made by RFT, passband 2 Hz to 200 kHz. The sound pressure 
fluctuations in the surrounding medium were recorded with a quarter-inch MK-221 condenser 
microphone with a working bandwidth of 20 kHz, which was connected to an RFT 01021 noise 
meter. The microphone capsule lay in the plane of the end of the nozzle at I m from it and 
was directed towards the center of the obstacle. The signals from the sensors and the micro- 
phone were recorded by an NO-67 tape recorder (frequency range up to 40 kHz)~ We recorded the 
frequency spectra and also the integral level &L ~ of the pressure fluctuations at the obstacle 
and in the surrounding medium (acoustic radiation from the jet). 

The spectral analyses were performed with an SK-4-72/2 narrow-band spectrum analyzer over 
the range 0.05 Hz to 20 kHz. The recordings were made with an Endim 622.01/1 XY recorder. 
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The phase characteristics in the pressure fluctuations at the obstacle were examined with an 
$8-17 double-beam storage oscilloscope. We used two series-connected 01013 narrow-band 
filters (RFT) working as a bandpass filter and tuned to the frequency of the first discrete compo- 
nent fr with bandwidth 3%. The output amplitudewas monitored by an 02022 indicator unit (RFT, 
bandwidth 0.5 Hz to 200 kHz). To eliminate phase shift due to the filter, each channel was adjusted 
exactly by means of an external GZ-III audio oscillator. The evolution of the shock-wave pat- 
tern was recorded with an RFK-5 automatic camera (exposure time 1/50 sec) by means of an IAB- 
451 optical instrument. The frequency range in the dynamic system constituted by the sensor 
(microphone) and tape recorder was up to 20 kHz, while the linearity in the frequency re- 
sponse for that range was i-2 dB. The parameters were recorded for a fixed distance h during 
the displacement of the rack along the obstacle, with linkage in the radial coordinate R to 
the path marker. Stationary measurements were also made (without the rack moving). The 
values of h and R were referred to the radius at the end of the nozzle. The experiments were 
performed in the following parameter ranges: M a = 2.14, n = Pa/Pi = 5.04, isentrope parameter 
u = 1.4, distance from end of nozzle to obstacle h = 5-18, vacuum parameter Re L = Re,(P0/ 
Pi )-~ = 1.36.106 (Re, is the Reynolds number defined from the critical nozzle parameters). 
The oscillations were detected from the discrete component occurring in the pressure fluctua- 
tion spectrum and from the oscillations in the shock-wave pattern. 

2. The following characteristic features occur in the shock layer in front of the ob- 
stacle. Figure la shows the integral pressure fluctuation level 6L ~ at the obstacle (points 
1 correspond to R = 2) and the level of the acoustic pressure (noise) in the surrounding 
space [points 2, AL ~ = 20 • log(o/P t) - L w, where o is the standard deviation in the pressure 
fluctuations and Pt = 2"10-5 Pa is the acoustic pressure at the threshold of audability, while 
L w is the wide-band noise level], with the distance H = h/(2Ma y/~n) as an independent variable. 
This confirmed the above interaction sequence [3] for the given M a and n as the nozzle receded 
smoothly from the obstacle (Fig. ib schemes); the [2] relationships (dashed vertical lines 
in Fig. i) corresponded well to the experimental distances H1i and H 6 relating to the start 
of the first nonstationary state and the instant of transition to the flow with unperturbed 
side lobe. Direct experimental values were used for the distances corresponding to the finish 
of the first nonstationary state H1f and the initiation of the second one H2i. The first 
nonstationary state arose with an increase in AL ~ by 20 dB (by comparison with the radial 
flow level). There was a slight smooth rise in 6L ~ for the second nonstationary state (H = 
H2i , which is evidently due to increase in the general wide-band level of the noise from the 
jet, since this is obvious for the flow with the unperturbed first lobe for H > H 6 (Fig. 2a, 
curves 6 and 7). Increase in H in the range H1i ~ H < H1f caused a fall in 6L ~ which cor- 
responds to [i, 8], while increase in H in the range H2i ~ H < H 6 was accompanied by a slight 
increase in AL ~ (about 5 dB in relation to the fluctuation level for the flow having a cen- 
tral circulation zone). In the range H1f ~ H < H2i, there was a constant integral level, 
which was raised by comparison with the radial flow. The H dependence of 6L ~ for the acoustic 
pressure (apart from H > H 6) in the surrounding space was analogous to that described above 

for AL ~ at the obstacle (Fig. la, points 2). 

The nonstationary states produce discrete components in the pulsation spectra at the ob- 
stacle (Fig. 2) or noise in the acoustic field. Figure 2a shows the variations in spectrum 
at R = 2 as h increases (curves 1-7 are for h = 7 and H = 0.62; 8 and 0.7; i0 and 0.88; 12 
and 1.06; 15 and 1.32; 15.7 and 1.38; and 16.5 and 1.45), while parts b and c of Fig. 2 
show the features of the spectra for two nonstationary states with R = var (b: h = 8, curves 
8-12 for R = 4.37; 2.63; 2.05; 1.47; 0; c: h = 15.7, curves 13-17 for R = 4; 3.2; 2.57; 1.66; 
0). These data show that the first nonstationary state has several discrete components, 
which exceed the level of the continuous noise by up to 40 dB (curves 2 and 3). The spectra 
for the second nonstationary state (curves 5 and 6) contain a single (basic) discrete compo- 
nent fr, whose excess over the general wide-band background is only 10-15 dB and is much less 
than in the first case. The transition from the first nonstationary state to the second oc- 
curs via a flow with a central circulation zone and is accompanied by a general increase in 
the level of the continuous spectrum (for example, 16 dB for curve 2 and 32 dB for curve 6) 
because of the inner mixing zone that develops along the tangential shock-wave line, which 
converges with a triple point at the detached shock wave. In the flow with a central cir- 
culation zone, there are no discrete components in the spectrum (curve 4) for the entire 

range H1f ~ H < H2i. 

In each of the above nonstationary states, there is a one-to-one correspondence between 
the spectral components (Fig. 2b and c) at the various points on the obstacle, which is such 
that the frequency of the pressure oscillations along it does not vary. However, away from 
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the stagnation point towards the periphery (curves 8-12 and 13-17), there is some fall in 
the level of the discrete components. Increase in the distance of the end of the nozzle 
from the obstacle in the ranges H:i ~ H ~ H:f and H2i ~ H ~ H 6 is accompanied by a fall in 
fr (the first discrete component) from 4.1 to 2~ kHz and from 2.9 to 2.75 kHz correspond- 
ingly, and in the second nonstationary state, the frequency range shifts downwards (Fig. ib). 
The Struhal number Sh r = frda/n/a0 (a 0 is the speed of sound in the retarded flow) is 0.47- 
0.3. The sawtooth (discontinuous) variation in fr with increase in H was observed in [9] 
for the interaction of a subsonic jet (0.6 ~ M= ~ 0.95) with a perpendicular planar unbounded 
obstacle. The third nonstationary state found in [4] outside the first side lobe (H > H~) 
for a dense jet in this parameter range is therefore not realized. 

Figure 3 shows the distribution of AL ~ along the obstacle for various H (points 3-6 in 
H correspond to the items enclosed in circles in Fig. la or for h: 3, 7 - h = 8; 4, 8 - 15; 
5, 9 - 15.7; 6, i0 - 16.5). Figure 3a shows the corresponding curves for the static pressure 
averaged over time Pw = P/Pi (points 7-10, Pw curves constructed on an single scale). These 
data show that the distribution of AL ~ along the obstacle has a peripheral maximum, which 
coincides with the peripheral maximum in Pw (see for example curves 3 and 7 Or 4 and 8 and 
so on). The heights of these maxima for the two nonstationary states (curves 3 and 5) are 
similar and attain 35-38 dB. The difference in AL ~ between the periphery and the center for 
the first nonstationary state is 5 dB, while it is 15 dB for the second. The high level of 
AL ~ in the peripheral maximum (about 35 dB) occurs for flow with a central circulation zone, 
and also for a stationary flow with an unperturbed first lobe (curves 5 and 6) because of 
effects from the turbulent pulsations in the inner mixing zone (near R = 2) [3, i0]. The 
oscillations in AL ~ at the edge (R > 4) may be due to a periodic structure in the gas flow 
(vortex bunches) at the periphery [Ii]. We now consider the flow at the obstacle under non- 
stationary conditions, particularly the phase characteristics of the oscillations. 

3. The first nonstationary state has several discrete components in the pulsation spec- 
trum, with vigorous oscillation in the shock-wave front and in the pressure at the obstacle 
p(T) (Fig. 4, h = 8). The multiple discrete components are due to the pressure pulsations 
being nonsinusoidal on account of the shock-wave processes in the region between the central 
shock wave and the obstacle. In Fig. 4a, 1 is Pw, 2 is AL ~ and I and II are the initial posi- 
tions (rack moving to the left) of sensors I and II (distance between them AR = 4 = const), 
while curves 1-6 enclosed in circles correspond to the following combinations of the sensor 
positions at the obstacle (points on the AL ~ dependence): RII/R I = 0/4; -0.9/3.1; --1.47/2.57; 
-2.05/1.94; -2.63/1.37; -3.8/0.2; p:(~) being the filtered signal from the bandpass filter 
at fr; b is for fr = 3.4 kHz and h = 8, and c is for fr = 3.1 kHz and h = 9 (RII/RII I = 2/2 
is the stationary position of sensors II and III). The pressure oscillations at the obstacle 
occur with high amplitude and comparatively low frequency, and they are deterministic and 
markedly periodic. The phase of the oscillations at the periphery (curves 1 and 2 for sensor 
I in Fig. 4b) is the same throughout. When one passes through the AL ~ maximum (to the stag- 
nation point), the phase changes by 180 ~ (curves 3-6, sensor I), i.e., the pressure oscilla- 
tion at the obstacle near the stagnation point (in the region of constant AL ~ level) is in 
antiphase to that at the peripheral maximum in AL ~ Then at points on opposite sides of the 
symmetry axis relating to different flow regions at the obstacle (center and periphery), the 
phase shift between sensors II and I persists (curves 3 and 5 show the filtered signal). 
Also, the pressure oscillations at points symmetrical with respect to the axis [e.g., the 
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p(~) and p1(~) curves in Fig. 4c] coincide in phase. These trends confirm that the oscilla- 
tions are of symmetrical longitudinal type. The first nonstationary state is a self-excited 
oscillation arising from the sudden transition from the stationary state of radial flow (H > 

Hzi). 

4. The second nonstationary state is characterized by a single discrete component in 
the pressure fluctuations, with moderate amplitude for the oscillations in the shock wave and 
pressure at the obstacle (Fig. 5, h = 15.7). This single component indicates much lower in- 
tensity for the shock waves acting on the obstacle, as their intensity approaches acoustic 
values. Here the symbols correspond to those used in Fig. 4a and b: curves 1-6 have been 
constructed for RII/R I = 0/4; -0.5/3.5; -0.74/3.26; -1.66/2.34; -2.11/1.89; -2.57/1.43, while 
p1(~) is for the transmission filter with fr = 2.6 kHz. Figure 5 shows that the pressure 
oscillations at the obstacle are not markedly periodic and occur with lower amplitude and 
frequency than in the first nonstationary state. The considerable proportions of low-fre- 
quency components make the phase analysis difficult. However, if we use the filtered signal 
p1(~) as basis, it is clear that the phase relations on the whole are the same as above. 
For example, the oscillations at the center and the edge (curves i, sensors II and I) are 
in antiphase; the phase shift between points on opposite sides of the symmetry axis is re- 
tained (curves 4 and 6, sensors II and I), while the oscillations at points symmetrical 
with respect to the center of the obstacle (Fig. 4d, h = 15.5, fr = 2.6 kHz) coincide in 
phase, which indicates that the oscillations are of longitudinal symmetrical form. The 
process in this case also is a self-excited oscillation. 

5. The transition to the second nonstationary state (as the obstacle recedes from the 
nozzle) occurs via the flow having a central circulation zone, for which the shock-wave 
front is almost stationary with an unaltered level of AL ~ and no discrete components in the 
frequency spectrum (Fig. 2a, curve 4). On the other hand, if we consider the change in mode 
as the obstacle approaches the nozzle from a distance H > H 6, the first nonstationary state 
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will be preceded by a flow having a central circulation zone. The self-oscillation state can 
thus be considered as transitional from the state of sublimiting radial flow (or from the 
state with unperturbed first side lobe) to the flow having a central circulation zone. 

The frequency characteristics of the nonstationary processes show that the results ob- 
tained by experiment for the dimensionless frequency (Struhal number) for dense jets fit the 
empirical relation 

a M 

in which A is the mean distance of the central shock wave from the obstacle, which is defined 
by the following [2]: A l = 4.1; B z = 0.6; A 2 = 1.9; B 2 = 0.i (i = I, 2 are the first and 
second nonstationary states). 

These experimental results show that the processes in the first and second states have 
features in common as well as differences. The first self-oscillation state has a consider- 
able AL ~ level and strong oscillations in the shock wave and pressure at the obstacle. A 
major feature of that state is that there are several discrete components in the frequency 
spectra, which exceed the level of the continuous spectrum by up to 40 dB. The pressure os- 
cillations at the obstacle occur with a large amplitude and comparatively low frequency. They 
are deterministic and markedly periodic. 

The second oscillation state is accompanied by a slight rise in AL ~ by comparison with 
the flow having a central circulation zone, with moderate oscillations in the shock wave and 
pressure at the obstacle. There is a single discrete component in the frequency spectrum, 
which exceeds the jet noise level by 10-15 dB. The pressure oscillations at the obstacle 
are not markedly periodic and have a lower frequency. They contain a large proportion of 
low-frequency components. 

In the first and second oscillation states, there is a peripheral maximum in AL~ whose 
position corresponds to the maximum in the static pressure at the obstacle. The oscillation 
phase alters by 180 ~ on passage through ALma x.~ The oscillations are symmetrical and are 
longitudinal with respect to the jet axis. 

. 

. 
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THE THEORY OF RESONANCE INTERACTION OF TOLLMIEN-SCHLICHTING WAVES 

A. P. Khokhlov UDC 532.526 

The resonance interaction of eigenoscillations of a boundary layer is treated by the 
method of matched asymptotic expansions. It is well known (see for example, [i]) that this 
is the weakest nonlinear effect in amplitude, following from the linear stages of disturbance 
evolution and playing an important role in the transition from laminar to turbulent boundary 
layer. The theoretical study of the effect started with [2-4], and was later extended by 
many authors [5-8]. 

In the present study the weakly nonlinear evolutionary equations are derived within the 
limit of large Reynolds numbers, and the resonance interaction is not assumed ahead of time, 
but is derived directly from the equations. 

The disturbance evolution is treated within the free interaction theory, i.e., one for- 
mally uses as original equations the three-dimensional nonstationary boundary layer equations 
with self-induced pressure, controlling the flow in the boundary region of the boundary layer. 
Three-wave resonance has already been investigated within this statement of the problem in 
the high-frequency limit [8], but without including the effect of the critical layer, which, 
as shown below, plays an important role. This is related to more marked features in a three- 
dimensional critical layer, while Smith and Stewart [8] obviously based their conclusion con- 
cerning "passivity" of the critical layer on investigation results for the two-dimensional 

case. 

The discussion is divided into two parts: in the first we derive the evolution equations 
by the method of matched asymptotic expansions, and in the second these equations are solved 
for problems without initial conditions, and the results obtained are briefly discussed. 

I. The starting equations consist of the three-layer scheme. The detailed derivation 
and characteristic orders of magnitude are given, for example, in [9], therefore we do not 
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